首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26680篇
  免费   2978篇
  国内免费   3826篇
化学   20772篇
晶体学   399篇
力学   960篇
综合类   197篇
数学   3628篇
物理学   7528篇
  2023年   301篇
  2022年   400篇
  2021年   755篇
  2020年   710篇
  2019年   751篇
  2018年   676篇
  2017年   708篇
  2016年   1087篇
  2015年   1082篇
  2014年   1216篇
  2013年   2065篇
  2012年   2258篇
  2011年   2460篇
  2010年   1646篇
  2009年   1768篇
  2008年   1888篇
  2007年   1717篇
  2006年   1528篇
  2005年   1480篇
  2004年   1619篇
  2003年   1245篇
  2002年   1269篇
  2001年   784篇
  2000年   566篇
  1999年   443篇
  1998年   326篇
  1997年   262篇
  1996年   274篇
  1995年   248篇
  1994年   190篇
  1993年   191篇
  1992年   171篇
  1991年   122篇
  1990年   138篇
  1989年   95篇
  1988年   93篇
  1987年   73篇
  1986年   73篇
  1985年   107篇
  1984年   104篇
  1983年   84篇
  1982年   62篇
  1981年   66篇
  1980年   52篇
  1979年   36篇
  1978年   30篇
  1977年   35篇
  1976年   26篇
  1975年   24篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
11.
Algebras and Representation Theory - Let A and B be two Morita equivalent finite dimensional associative algebras over a field ��. It is well known that Hochschild cohomology is...  相似文献   
12.
为提升n型叉指背接触(IBC)太阳电池的光电转换效率,采用丝网印刷硼浆和高温扩散的方式形成选择性发射极结构,研究了硼扩散和硼浆印刷工艺对电池发射极钝化性能和接触性能的影响。实验结果表明,在硼扩散沉积时间和退火时间一定的条件下,硼扩散通源(BBr3)流量为100 mL/min,沉积温度为830 ℃,退火温度为920 ℃时,发射极轻掺杂(p+)区域的隐开路电压达到710 mV,暗饱和电流密度为12.2 fA/cm2。发射极局部印刷硼浆湿重为220 mg时,经过高温硼扩散退火,重掺杂(p++)区域的隐开路电压保持在683 mV左右,该区域方块电阻仅46 Ω/□,金属接触电阻为2.3 mΩ·cm2. 采用该工艺方案制备的IBC电池最高光电转换效率达到24.40%,平均光电转换效率达到24.32%,相比现有IBC电池转换效率提升了0.28个百分点。  相似文献   
13.
Journal of Solid State Electrochemistry - The addition of nanocrystalline titanium dioxide (P90) to a cathode of Li/S cell enhances its voltammetric charge capacity by 19%, from which only a small...  相似文献   
14.
单碱基错配的识别和稳定性差异在核酸多态性研究中至关重要。在同一电化学传感器平台上,采用电化学发光(ECL)和电化学阻抗(EIS)2种技术,协同研究DNA链中不同类型和不同位点的单碱基错配识别和稳定性差异。电极表面具有茎环构象的探针DNA与完全互补DNA、不同类型或不同位点单碱基错配DNA杂交前后的ECL和EIS信号强度变化有显著差异。信号强度变化可揭示单碱基错配识别的稳定性。结果表明,DNA链中心位点的C-A单碱基错配稳定性低于链两端的,靠近键合电极表面双链链端的C-A单碱基错配稳定性低于非键合电极表面双链链端的,同一中心位点C-X碱基对的稳定性顺序为C-G?C-T>C-A≥C-C。研究结果可为核酸多态性研究提供参考。  相似文献   
15.
We reported a chalcogenide glass-based rib waveguide fabricated using photolithography and dry etching method. A commercial software(COMSOL Multiphysics) was used to optimize the waveguide structure and the distribution of the fundamental modes in the waveguide based on the complete vector finite component. We further employed thermal annealing to optimize the surface and sidewalls of the rib waveguides. It was found that the optimal annealing temperature for Ge As Se S films is 220℃, and the roughness of the films could be significantly reduced by annealing. The zero-dispersion wavelength(ZDW) could be shifted to a short wavelength around ~2.1 μm via waveguide structural optimization, which promotes supercontinuum generation with a short wavelength pump laser source. The insertion loss of the waveguides with cross-sectional areas of 4.0 μm×3.5 μm and 6.0 μm×3.5 μm was measured using lens fiber and the cut-back method. The propagation loss of the 220℃ annealed waveguides could be as low as 1.9 d B/cm at 1550 nm.  相似文献   
16.
In bounded convex domains, the regularity of a vector field u with its divu, curlu in Lr space and the tangential component or the normal component of u over the boundary in Lr space, is established for 1<r<. As an application, we derive an Hr(curl,Ω) estimate for solutions to a Maxwell type system with an inhomogeneous boundary condition in convex domains. In contrast to the well-posed region of r in the space Hr(curl,Ω) for the Maxwell type system in Lipschitz domains given by Kar and Sini (2016) [16], we extend the well-posed region to be optimal.  相似文献   
17.
Although great progress has been made in the advancement of nanozymes, most of the studies focus on mimicking peroxidase, oxidase, and catalase, while relatively few studies are used to mimic laccase. However, the use of nanomaterials to mimic laccase activity will have great potential in environmental and industrial catalysis. Herein, Cu/CuO-graphene foam with laccase-like activity was designed for the identification of phenolic compounds and the detection of epinephrine. In a typical experiment, the formation mechanism of Cu/CuO-graphene foam was investigated during the pyrolysis process by thermogravimetric-mass spectrometry. As a laccase mimic, Cu/CuO-graphene foam exhibited excellent catalytic activity with a Michaelis-Menten constant and a maximum initial velocity of 0.17 mmol/L and 0.012 mmol∙L-1∙s-1, respectively. Based on this principle, Cu/CuO-graphene foam nanozyme could differentially catalyze phenolic compounds and 4-aminoantipyrine for simultaneous identification of phenolic compounds. Furthermore, a colorimetric sensing platform was fabricated for the quantitative determination of epinephrine, showing linear responses to epinephrine in the range of 3 mg/mL to 20 mg/mL with the detection limit of 0.2 mg/mL. The proposed Cu/CuO-graphene foam nanozyme could be applied for the identification of phenolic compounds and the detection of epinephrine, showing great potential applications for environmental monitoring, biomedical sensing, and food detection fields.  相似文献   
18.
19.
Xiang Zhao  Lei Cai 《中国化学》2020,38(2):220-221
Developing efficient glycosylation methods and strategies is always a top priority and endless pursuit for carbohydrate chemists to acquire complex glycosidic linkages.While most glycosylation reactions are step-wise,that is,installation of the leaving group at the anomeric position first followed by activation and coupling with acceptors(Scheme 1a),dehydrative glycosylation is obviously more straightforward.[1]In this strategy,C1-hemiacetals are directly activated to couple with acceptors,thus obviating additional C1 modification steps(Scheme 1b).Unfortunately,the intrinsic stability of C1-hemiacetals impedes their applications.  相似文献   
20.
Journal of Thermal Analysis and Calorimetry - Differences of thermal decomposition characteristics and combustion properties between CL-20-based propellants and HMX-based propellants were...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号